I would like to sample a few hundred binomially distributed random variables, each with a different n and p (using the argument names as defined in the numpy.random.binomial docs). I'll be doing this repeatedly, so I'd like to vectorize the code if possible. Here's an example:
import numpy as np
# Made up parameters
N_random_variables = 500
n_vals = np.random.random_integers(100, 200, N_random_variables)
p_vals = np.random.random_sample(N_random_variables)
# Can this portion be vectorized?
results = np.empty(N_random_variables)
for i in xrange(N_random_variables):
results[i] = np.random.binomial(n_vals[i], p_vals[i])
In the special case that n and p are the same for each random variable, I can do:
import numpy as np
# Made up parameters
N_random_variables = 500
n_val = 150
p_val = 0.5
# Vectorized code
results = np.random.binomial(n_val, p_val, N_random_variables)
Can this be generalized to the case when n and p take different values for each random variable?
Aucun commentaire:
Enregistrer un commentaire