I think my code below it's not exactly give me the same random distribution.
subroutine trig_random_value()
implicit none
integer :: t, z, y, x
real(real64) :: theta, r
real(real64), parameter :: PI=4.D0*DATAN(1.D0)
integer, dimension(12) :: date_time
integer, dimension(12) :: seed
call date_and_time(values=date_time)
call random_seed
seed = date_time(6) * date_time(7) + date_time(8)
call random_seed(put = seed)
do z = 1, z_size
do y = 1, y_size
do x = 1, x_size
theta = rand()*2*PI
r = 0.1*rand()
l1(1, z, y, x) = r*cos(theta)
l2(1, z, y, x) = r*sin(theta)
theta = rand()*2*PI
r = 0.1*rand()
l1(2, z, y, x) = r*cos(theta)
l2(2, z, y, x) = r*sin(theta)
end do
end do
end do
return
end subroutine trig_random_value
According to my code, I try to random value into l1(1,:,:,:)
, l1(2,:,:,:)
, l2(1,:,:,:)
and l2(2,:,:,:)
where l(t, x, y, z) is (3+1)-dimension array
Why i use trigonometry function for my random function? because i want a circular randomization. If i plot distribution of l1(1,:,:,:) vs l2(1,:,:,:) or l1(2,:,:,:) vs l2(2,:,:,:) you will see that a shape of plotting is circle.
So, let's get into my problem. Why i tell you that this's not exactly give me a same distribution? because i was tried to measure a variance of them and i got
variance_l1_t1 = 1.6670507752921395E-003
variance_l1_t2 = 3.3313151655785292E-003
variance_l2_t1 = 4.9965623815717321E-003
variance_l2_t2 = 6.6641054728288360E-003
where (variance_l1_t2 - variance_l1_t1) = (variance_l2_t1 - variance_l1_t2) = (variance_l2_t2 - variance_l2_t1) = 0.00166
That's quite weird. In actaully i should get almost the same variance value of l1(1,:,:,:)
, l1(2,:,:,:)
, l2(1,:,:,:)
and l2(2,:,:,:)
How to solve this problem?
Aucun commentaire:
Enregistrer un commentaire