samedi 30 janvier 2016

Generic algorithm implementation to select a random subset

Suppose we are to select a random subset of size m from a total set of size n. Since each element in the total set can be identified using a unique index from S = {0, 1, 2, ..., (n - 1)}. The problem is equivalent to randomly select m distinct elements from S.

A trivial algorithm would be repetitively invoking a pseudo-random number generator rand to generate random numbers from S. If a number has been generated before, just try again. The algorithm terminates until m distinct numbers are generated. This algorithm has an optimal space complexity of O(1), but may invoke rand more than m times.

I'm more concerning about the time complexity instead of space complexity, and would happily trade space for time if reasonable. So I implemented the following algorithm. It invokes rand exactly min{m, (n - m)} times, but at the price of an increased space complexity of O(n). (original code can be found here)

template <typename Clock = std::chrono::high_resolution_clock>
auto tick_count() {
  return Clock::now().time_since_epoch().count();
}

template <typename OutIt, typename RAND = std::minstd_rand,
          typename Uint = typename RAND::result_type>
void random_subset(std::size_t m, std::size_t n, OutIt it, RAND&& rand =
                   RAND(static_cast<Uint>(tick_count()))) {
  assert(n - 1 <= rand.max());
  assert(m <= n);
  if (m == 0) return;
  auto swapped = false;
  auto tmp = n - m;
  if (tmp < m) {
    m = tmp;
    swapped = true;
  }
  std::vector<std::size_t> indices(n);
  std::iota(indices.begin(), indices.end(), static_cast<std::size_t>(0));
  auto back_it = indices.end();
  for (std::size_t i = 0; i < m; ++i) {
    auto idx = rand() % (n - i);
    std::swap(indices[idx], *--back_it);
  }
  swapped ? std::copy(indices.begin(), back_it, it) :
            std::copy(back_it, indices.end(), it);
}

I'm wondering whether the algorithm can be further improved in terms of performance. Improvements to the generic implementation are also welcome.




Aucun commentaire:

Enregistrer un commentaire