I use lme4 in R to fit the mixed model
model<- glmer(responcevariable~ fixedvariable1 + fixedvariable2 +fixedvariable3 + fixedvariable+ (1|randomvariable1)+ (1|randomvariable2)+(1|randomvariable3), data=Dataset, family=binomial)
And I get
Data: Dataset
AIC BIC logLik deviance df.resid
5005.8 5072.2 -2492.9 4985.8 5612
Scaled residuals:
Min 1Q Median 3Q Max
-3.5750 -0.4896 -0.2675 0.5618 11.6250
Random effects:
Groups Name Variance Std.Dev.
randomvariable1 (Intercept) 0.007826 0.08847
randomvariable2 (Intercept) 1.366346 1.16891
randomvariable3 (Intercept) 0.011879 0.10899
Number of obs: 5622, groups: randomvariable1, 49; randomvariable2, 5; randomvariable3, 4
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.98557 0.66851 -17.929 < 2e-16 ***
fixedvariable1a -0.31754 0.09732 -3.263 0.00110 **
fixedvariable1b 0.26805 0.08614 3.112 0.00186 **
fixedvariable2a -0.61098 0.09521 -6.417 1.39e-10 ***
fixedvariable2b -0.50402 0.10526 -4.788 1.68e-06 ***
fixedvariable3 7.57652 0.26308 28.799 < 2e-16 ***
fixedvariable4 -0.30746 0.07852 -3.915 9.03e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
How can I know that the effect of random variable is significant?
Aucun commentaire:
Enregistrer un commentaire