vendredi 24 novembre 2017

Sample uniformly in a multidimensional ring without rejection

The algorithm in this question tells us how to efficiently sample from a multidimensional ball. Is there a way to similarly efficiently sample from a multidimensional ring , i.e. have r1

I hope that a not too complex modification of that scaling function r*(gammainc(s2/2,n/2).^(1/n))./sqrt(s2) is possible. (Mediocrity disclaimer: haven't even figured the algebra/geometry for the original scaling function yet).

Original matlab code copypasted:

function X = randsphere(m,n,r)

% This function returns an m by n array, X, in which 
% each of the m rows has the n Cartesian coordinates 
% of a random point uniformly-distributed over the 
% interior of an n-dimensional hypersphere with 
% radius r and center at the origin.  The function 
% 'randn' is initially used to generate m sets of n 
% random variables with independent multivariate 
% normal distribution, with mean 0 and variance 1.
% Then the incomplete gamma function, 'gammainc', 
% is used to map these points radially to fit in the 
% hypersphere of finite radius r with a uniform % spatial distribution.
% Roger Stafford - 12/23/05

X = randn(m,n);
s2 = sum(X.^2,2);
X = X.*repmat(r*(gammainc(s2/2,n/2).^(1/n))./sqrt(s2),1,n);

Equivalent python code with demo from Daniel's answer:

import numpy as np
from scipy.special import gammainc
from matplotlib import pyplot as plt
def sample(center,radius,n_per_sphere):
    r = radius
    ndim = center.size
    x = np.random.normal(size=(n_per_sphere, ndim))
    ssq = np.sum(x**2,axis=1)
    fr = r*gammainc(ndim/2,ssq/2)**(1/ndim)/np.sqrt(ssq)
    frtiled = np.tile(fr.reshape(n_per_sphere,1),(1,ndim))
    p = center + np.multiply(x,frtiled)
    return p

fig1 = plt.figure(1)
ax1 = fig1.gca()
center = np.array([0,0])
radius = 1
p = sample(center,radius,10000)
ax1.scatter(p[:,0],p[:,1],s=0.5)
ax1.add_artist(plt.Circle(center,radius,fill=False,color='0.5'))
ax1.set_xlim(-1.5,1.5)
ax1.set_ylim(-1.5,1.5)
ax1.set_aspect('equal')




Aucun commentaire:

Enregistrer un commentaire