Suppose I have a Pandas Dataframe named df
, which has the following structure:-
Column 1 Column 2 ......... Column 104
Row 1 0.01 0.55 3
Row 2 0.03 0.14 1
...
Row 100 0.75 0.56 0
What I am trying to accomplish is that for all rows which match the condition given below, I need to generate 100
more rows with a random value between 0
and 0.05
added to each row:-
is_less = df.iloc[:,-1] > 1
df_try = df[is_less]
df = df.append([df_try]*100,ignore_index=True)
The problem is that I can simply duplicate the rows in df_try
to generate 100
more rows for each case, but I want to add a random value to each row as well, such that each row is different from the others but very similar.
import random
df = df.append([df_try + random.uniform(0,0.05)]*100, ignore_index=True)
What this does is to simply add the fixed random value to df_try
's 100
new rows, but not a unique random value to each row. I know that this is because the above syntax does not iterate over df_try, resulting in the fixed random value being added, but is there a suitable way to add the random values iteratively over the data frame in this case?
Aucun commentaire:
Enregistrer un commentaire