I've often heard that you should never mod the result of your random number generator if you want a uniform distribution. However, I've seen that using a std::uniform_int_distribution
makes no difference for significantly small ranges.
Below is an example using both mod and uniform_int_distribution
for values 0 - 15:
std::mt19937 gen;
gen.seed(0);
int ROWS = 6;
int COLS = 10;
std::cout << "mod: \n";
for (size_t i = 0; i < ROWS; ++i){
for (size_t j = 0; j < COLS; ++j){
std::cout << std::setw(2) << gen() % 16 << " ";
}
std::cout << "\n";
}
std::cout << "\n";
gen.seed(0);
std::uniform_int_distribution<> distrib(0, 15);
std::cout << "dist: \n";
for (size_t i = 0; i < ROWS; ++i){
for (size_t j = 0; j < COLS; ++j){
std::cout << std::setw(2) << distrib(gen) << " ";
}
std::cout << "\n";
}
results:
mod:
12 15 5 0 3 11 3 7 9 3
5 2 4 7 6 8 8 12 10 1
6 7 7 14 8 1 5 9 13 8
9 4 3 0 3 5 14 15 15 0
2 3 8 1 3 13 3 3 14 7
0 1 9 9 15 0 15 10 4 7
dist:
12 15 5 0 3 11 3 7 9 3
5 2 4 7 6 8 8 12 10 1
6 7 7 14 8 1 5 9 13 8
9 4 3 0 3 5 14 15 15 0
2 3 8 1 3 13 3 3 14 7
0 1 9 9 15 0 15 10 4 7
I guess it has something to do with 2 bytes? I'm just wondering how this is valid mathematically since its stepping through the random number generator and modding results. Does this mean mod creates a uniform distribution if the range is small enough? And why a 2 byte range and not more?
Aucun commentaire:
Enregistrer un commentaire