I have two modules, the first of which which is:
# module.py
import numpy
import myrandom
class A():
def __init__(self,n1,n2):
A.rng_set1 = myrandom.generate_random(n1)
A.rng_set2 = myrandom.generate_random(n2)
A.data = np.concatenate((A.rng_set1,A.rng_set2))
The module myrandom is something like:
# myrandom.py
import numpy as np
def generate_random(n):
return np.random.rand(n)
Given a seed I want A.data to be predictable. I don't want rng_set1 and rng_set2 to share the same numbers if n1 equals n2. I don't understand how to seed this thing.
I've tried putting np.random.seed(constant) into generate_random, into A's init, at module.py top level and before import module.py. I can't seem to get the desired result.
How am i supposed to do this? Thank you.
Aucun commentaire:
Enregistrer un commentaire