I'm creating dataset for testing with
import random
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
random.seed(10)
X, y = make_regression(n_samples = 1000, n_features = 10)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)
X[0:2]
Could you please explain why I get a different dataset after each running? For example, 2 runs return
array([[-0.28058959, -0.00570283, 0.31728106, 0.52745066, 1.69651572,
-0.37038286, 0.67825801, -0.71782482, -0.29886242, 0.07891646],
[ 0.73872413, -0.27472164, -1.70298606, -0.59211593, 0.04060707,
1.39661574, -1.25656819, -0.79698442, -0.38533316, 0.65484856]])
and
array([[ 0.12493586, 1.01388974, 1.2390685 , -0.13797227, 0.60029193,
-1.39268898, -0.49804303, 1.31267837, 0.11774784, 0.56224193],
[ 0.47067323, 0.3845262 , 1.22959284, -0.02913909, -1.56481745,
-1.56479078, 2.04082295, -0.22561445, -0.37150552, 0.91750366]])
Aucun commentaire:
Enregistrer un commentaire