I'm trying to get numpy to use my own implementation of an RNG in for consistency reasons. My understanding, based on the little documentation I could find, from the numpy docs here and here is that I need to provide a custom BitGenerator class that implements the random_raw
method and then initialise using np.random.Generator
, so I tried this:
import numpy as np
class TestBitGenerator(np.random.BitGenerator):
def __init__(self):
super().__init__(0)
self.counter = 0
def random_raw(self, size=None):
self.counter += 1
if size is None:
return self.counter
return np.full(n, self.counter)
mc_adapter = TestBitGenerator()
npgen = np.random.Generator(mc_adapter)
print(npgen.random())
which results in a segfault:
$ python bitgen.py
Segmentation fault (core dumped)
I assume I'm missing something (from TestBitGenerator?) here, can anyone point me in the right direction? I tried not subclassing np.random.BitGenerator.
I using numpy 1.19.2 and python 3.8.2
Aucun commentaire:
Enregistrer un commentaire