Say I have a list of random float numbers between 1 and 10. I want to find a largest subset where any two of the numbers are different from each other larger than a mindiff = 1.
. Right now I am using a brute-force method to search from largest to smallest subsets using itertools.combinations
. As shown below, the code finds a subset after 4 s for a list of 20 numbers.
from itertools import combinations
import random
from time import time
mindiff = 1.
length = 20
random.seed(99)
lst = [random.uniform(1., 10.) for _ in range(length)]
t0 = time()
n = len(lst)
sample = []
found = False
while not found:
# get all subsets with size n
subsets = list(combinations(lst, n))
random.shuffle(subsets)
for subset in subsets:
# sort the subset numbers
ss = sorted(subset)
# calculate the differences between every two adjacent numbers
diffs = [j-i for i, j in zip(ss[:-1], ss[1:])]
if min(diffs) > mindiff:
sample = set(subset)
found = True
break
# check subsets with size -1
n -= 1
print(sample)
print(time()-t0)
Output:
{2.3704888087015568, 4.365818049020534, 5.403474619948962, 6.518944556233767, 7.8388969285727015, 9.117993839791751}
4.182451486587524
However, in reality I have a list of 200 numbers, which is infeasible for a brute-froce enumeration. I want a fast algorithm to sample just one random largest subset with a minimum difference larger than 1. Note that I want each sample has randomness and maximum size. Any suggestions?
Aucun commentaire:
Enregistrer un commentaire