First, for context, I am working on a game where when you do something good you earn positive credits and when you do something bad you earn negative credits, and each credit corresponds to flipping a biased coin where if you get heads then something happens (good if its a positive credit, bad if its a negative credit) and otherwise nothing happens.
The deal is that I want to handle the case of multiple credits and fractional credits, and I would like to have flips use up credits so that if something good/bad happens then the leftover credits carry over. A straightforward way of doing this is to just perform a bunch of trials, and in particular for the case of fractional credits we can multiply the number of credits by X and the likelihood of something happening by 1/X (the distribution has the same expectation but slightly different weights); unfortunately, this places a practical limit on how many credits the user can get and also how many decimal places can be in the number of credits since this results in an unbounded amount of work.
What I would like to do is to take advantage of the fact that I am sampling the continuous negative binomial distribution, which is the distribution of how many trials it takes to get heads, i.e. so that if f(X) is the distribution then f(X) gives the probability that there will be X tails before we run into a heads, where X need not be an integer. If I can sample this distribution, then what I can do is that if X is the number of tails then I can see if X is greater or less than the number of credits; if it is greater than then we use up all of the credits but nothing happens, and if it is less than or equal to then something good happens and we subtract X from the number of credits. Furthermore, because the distribution is continuous I can easily handle fractional credits.
Does anyone know of a way for me to be able to efficiently sample the continuous negative binomial distribution (that is, a function that generates random numbers from this distribution)?
Aucun commentaire:
Enregistrer un commentaire