I have a hard time to randomly select rows from a dataframe. In general, choosing one row is not a problem using np.random.choice(data,size=1000)
. I assume that replacement=True. However, I need to randomly select an hour and as output, recieve the 4 rows of each quarter.
The dataframe to choose from is the following (1132 rows):
data=
Price Consume Feed
StartTime
2018-07-04 02:00:00 45.80 67.91 67.91
2018-07-04 02:15:00 45.80 51.05 51.05
2018-07-04 02:30:00 45.80 46.12 46.12
2018-07-04 02:45:00 45.80 46.86 46.86
2018-07-11 05:00:00 43.80 43.49 43.49
2018-07-11 05:15:00 43.80 50.71 50.71
2018-07-11 05:30:00 43.80 48.19 48.19
2018-07-11 05:45:00 43.80 40.02 40.02
My desired output is something like this:
Assuming the random generator has "selected" 2018-07-11 05:00:00
, the output would be
2018-07-11 05:00:00 43.80 43.49 43.49
2018-07-11 05:15:00 43.80 50.71 50.71
2018-07-11 05:30:00 43.80 48.19 48.19
2018-07-11 05:45:00 43.80 40.02 40.02
Is it possible to randomly select an dayhour directly from the dataframe and repeat this 1000 times? I am afraid that using an extra dataframe to select an hour and then looking the corresponding values up in the original dataframe will be too time consuming. I am confident that this should be doable in Python, but I couldn`t find any tips on this.
Thanks for any help!
Aucun commentaire:
Enregistrer un commentaire