In the code here below the vector rand is initialized when I call the first time the function create_model().
def create_model(num_columns):
inp_layer = tfl.Input((num_columns,))
rand = tf.random.uniform((1,num_columns), minval = 0, maxval = 2, dtype = tf.int32), tf.float32))
inp_rand = tfl.Multiply()([inp_layer, rand])
dense = tfl.Dense(256, activation = 'relu')(inp_rand)
dense = tfl.Dense(128, activation = 'relu')(dense)
dense = tfl.Dense(64, activation = 'sigmoid')(dense)
model = tf.keras.Model(inputs = inp_layer, outputs = dense)
model.compile(optimizer = 'adam', loss = 'binary_crossentropy')
model = create_model(num_columns)
model.fit()
I would like it to be regenerated with new random values every time I call the function model.fit(), or even better, at any batch during the execution of model.fit().
Would you know how I can do this?
Aucun commentaire:
Enregistrer un commentaire