def training(epochs=1, batch_size=128):
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for e in range(1,epochs+1 ):
print("Epoch %d" %e)
for _ in tqdm(range(batch_size)):
#generate random noise as an input to initialize the generator
noise= np.random.normal(0,1, [batch_size, 50])
# Generate fake data from noised input
generated_data = generator.predict(noise)
# Get a random set of real data
data =b[np.random.randint(0,b[0],size=batch_size)]
#Training the discriminator to detect more accurately
#whether a generated image is real or fake
discm_loss_real = discriminator.train_on_batch(data, valid)
discm_loss_fake = discriminator.train_on_batch(generated_data, fake)
discm_loss = 0.5 * np.add(discm_loss_real, discm_loss_fake)
#Training the Generator
#Training the generator to generate images
#which pass the authenticity test
genr_loss = combined_network.train_on_batch(noise, valid)
if e == 1 or e % 20 == 0:
generate_and_save_data()
training(500,128)
Plesae help me to solve the issue. I went through similar problems but could not find effective solution.
Aucun commentaire:
Enregistrer un commentaire