So they say if you flip a coin 50 times and get heads all 50 times, you're still 50/50 the next flip and 1/4 for the next two. Do you think/know if this same principle applies to computer pseudo-random number generators? I theorize they're less likely to repeat the same number for long stretches.
I ran this a few times and the results are believable, but I'm wondering how many times I'd have to run it to get an anomaly output.
def genString(iterations):
mystring = ''
for _ in range(iterations):
mystring += str(random.randint(0,9))
return mystring
def repeatMax(mystring):
tempchar = ''
max = 0
for char in mystring:
if char == tempchar:
count += 1
if count > max:
max = count
else:
count = 0
tempchar = char
return max
for _ in range(10):
stringer = genString()
print repeatMax(stringer)
I got all 7's and a couple 6's. If I run this 1000 times, will it approximate a normal distribution or should I expect it to stay relatively predictable? I'm trying to understand the predictability of pseudo random number generation.
Aucun commentaire:
Enregistrer un commentaire