I am trying to optimize a pipeline and wanted to try giving RandomizedSearchCV
a np.random.RandomState
object. I can't it to work but I can give it other distributions.
Is there a special syntax I can use to give RandomSearchCV
a np.random.RandomState(0).uniform(0.1,1.0)
?
from scipy import stats
import numpy as np
from sklearn.neighbors import KernelDensity
from sklearn.grid_search import RandomizedSearchCV
# Generate data
x = np.random.normal(5,1,size=int(1e3))
# Make model
model = KernelDensity()
# Gridsearch for best params
# This one works
search_params = RandomizedSearchCV(model, param_distributions={"bandwidth":stats.uniform(0.1, 1)}, n_iter=30, n_jobs=2)
search_params.fit(x[:, None])
# RandomizedSearchCV(cv=None, error_score='raise',
# estimator=KernelDensity(algorithm='auto', atol=0, bandwidth=1.0, breadth_first=True,
# kernel='gaussian', leaf_size=40, metric='euclidean',
# metric_params=None, rtol=0),
# fit_params={}, iid=True, n_iter=30, n_jobs=2,
# param_distributions={'bandwidth': <scipy.stats._distn_infrastructure.rv_frozen object at 0x106ab7da0>},
# pre_dispatch='2*n_jobs', random_state=None, refit=True,
# scoring=None, verbose=0)
# This one doesn't work :(
search_params = RandomizedSearchCV(model, param_distributions={"bandwidth":np.random.RandomState(0).uniform(0.1, 1)}, n_iter=30, n_jobs=2)
# TypeError: object of type 'float' has no len()
Aucun commentaire:
Enregistrer un commentaire